Islet neogenesis from the constitutively nestin expressing human umbilical cord matrix derived mesenchymal stem cells.

نویسندگان

  • Sachin S Kadam
  • Ramesh R Bhonde
چکیده

The scarcity of islets for transplantation calls for an alternative sources of islets. The human umbilical cord has been shown to be a reservoir of multipotent stem cells with capacity to differentiate into ectodermal, mesodermal and endodermal lineages. The present investigation deals with isolation and characterization of mesenchymal stem sells (MSC) derived from human umbilical cord and their differentiation into functional islets. Since these MSCs were found to constitutively express nestin we hypothesized that these would be ideal candidates for islet neogenesis without any further manipulation. Human umbilical cord matrix stem cells (hUCMSCs) were found to express CD29, CD44, CD73, CD90, CD105, smooth muscle actin, nestin, vimentin, proliferation marker Ki67 and embryonic markers Oct4, SSEA4. These were found to be negative for CD33, CD34, CD45 and HLA DR. Human UCMSCs exhibited high proliferating capacity for extended period indicating potential for scaling up. When subjected to a cocktail of specific differentiating factors, these cells differentiated into fat, cartilage, bone, neurons and islet like clusters (ILCs). These ILCs stained positive for diphenylthiocarbazone (DTZ) and expressed human C-peptide, insulin and glucagon. Real time qPCR analysis of newly generated islets further demonstrated abundance of Pdx-1, Ngn3, insulin, glucagon and somatostatin transcripts. On transplantation in experimental diabetic mice these ILCs restored normoglycemia, body weight and exhibited normal glucose tolerance test indicating their functional status. Thus, the present study demonstrates potential of constitutively expressing nestin positive progenitor from umbilical cord as a novel source for islet neogenesis and their usage in cell replacement therapy for diabetes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

Co-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice

Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...

متن کامل

Evaluation of Neurogenic Potential of Human Umbilical Cord Mesenchymal Cells a Time- and Concentration- Dependent Manner

Background: Retinoic acid as one of the most important regulators for cell differentiation was examined in this study for differentiation of human umbilical mesenchymal cells (hUCM). Methods: After isolation, hUCM were evaluated for mesenchymal stem cell properties by flow cytometry and alkaline phosphatase assay. Also, doubling time of the cells and their differentiation potential into adipoge...

متن کامل

In-vitro Differentiation of Human Umbilical Cord Wharton’s Jelly Mesenchymal Stem Cells to Insulin-Producing Cells

  Background & Objective: Diabetes is a major chronic metabolic disease in the world. Islet transplantation is a way to treat diabetes. Unfortunately, this method is restricted due to graft rejection and lack of donor islets. Mesenchymal Stem Cells (MSCS) have the ability to differentiate into Insulin-Producing Cells (IPCs). In this study, Human Umbilical Mesenchymal Stem Cells (HUMSCS) were in...

متن کامل

Rapid Induction of Neural Differentiation in Human Umbilical Cord Matrix Mesenchymal Stem Cells by cAMP-elevating Agents

Human umbilical cord matrix (hUCM) is considered as a promising source of mesenchymal stem cells (MSCs) due to several advantages over other tissues. The potential of neural differentiation of hUCM-MSCs is of great interest in the context of treating neurodegenerative diseases. In recent years, considerable efforts have been made to establish in vitro conditions for improving the different...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Islets

دوره 2 2  شماره 

صفحات  -

تاریخ انتشار 2010